Thermodynamic Properties of Fe-Lanthanoid-O Compounds at High Temperatures

TAKASHI KATSURA, TOSHIMORI SEKINE, KENZO KITAYAMA, and TADASHI SUGIHARA
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

and NOBORU KIMIZUKA

National Institute for Researches in Inorganic Materials, Sakura-mura, Niiharigun, Ibaraki 300-31, Japan

Received March 17, 1977; in revised form June 2, 1977

Abstract

After establishing the phase equilibria in the systems $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ at 1150 , 1200 , and $1250^{\circ} \mathrm{C}$, the standard Gibbs free energies of formation of $\mathrm{HoFe}_{2} \mathrm{O}_{4}, \mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, \mathrm{HoFeO}_{3}$. $\mathrm{TmFe}_{2} \mathrm{O}_{4}, \mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, \mathrm{TmFeO}_{3}$ have been determined on the basis of reactions among metailic iron. oxygen, and the respective lanthanoid sesquioxide. A new compound $\mathrm{Tm}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ was found at $1380^{\circ} \mathrm{C}$. The standard Gibbs free energies of formation of $\mathrm{Gd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, \mathrm{~Tb}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$, and $\mathrm{Dy}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ were also determined. On the basis of these new data together with our previous studies on phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}^{-}$ lanthanoid sesquioxide systems, we have been able to establish a phase diagram at high temperatures from 900 to $1400^{\circ} \mathrm{C}$. The thermochemical relative stability in each type of compound, that is to say, LnFeO 3 (Ln $=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and Y$), L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}(L n=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}$, $\mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and Y), $L n \mathrm{Fe}_{2} \mathrm{O}_{4}(L n=\mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and Y$)$, and $L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}(L n=\mathrm{Yb}$ and Lu$)$ was investigated by using the following standard Gibbs free energy changes of oxide-oxide reactions, $\frac{1}{2} \mathrm{Fe}_{2} \mathrm{O}_{3}+\frac{1}{2} L n_{2} \mathrm{O}_{3}=L n \mathrm{FeO}_{3}, 3 L n \mathrm{FeO}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}=L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, \mathrm{FeO}+L n \mathrm{FeO}_{3}=L n \mathrm{Fe}_{2} \mathrm{O}_{4}$, and $\operatorname{Ln} \mathrm{Fe}_{2} \mathrm{O}_{4}$ $+L n \mathrm{FeO}_{3}=L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$. The results thus obtained were compared with those of the structural relative stability.

Introduction

Recently, phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-$ $L n_{2} \mathrm{O}_{3}[\operatorname{Ln}=\mathrm{La}(1), \mathrm{Nd}(2), \mathrm{Sm}(2$ and 3$), \mathrm{Eu}(2$ and 4), $\operatorname{Er}(3), \mathrm{Yb}(5), \mathrm{Lu}(6)$, and $Y(7)]$ systems have been established at $1200^{\circ} \mathrm{C}$, and Kimizuka and Katsura (5) have proposed that these systems could be classified into four groups with respect to the assemblage of the ternary compounds. According to their proposal, the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-(\mathrm{La} \text { and } \mathrm{Nd})_{2} \mathrm{O}_{3}$ systems belong to the A type in which only one ternary compound $\mathrm{Ln} \mathrm{FeO}_{3}$ exists stably, the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-(\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb} \text {, and } \mathrm{Dy})_{2} \mathrm{O}_{3}$ systems belong to the B type with two compounds $L n \mathrm{FeO}_{3}$ and $L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$, the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-(\mathrm{Ho}$,
Er, Tm, and Y$)_{2} \mathrm{O}_{3}$ systems to the C type with three compounds $L n \mathrm{FeO}_{3},{L n_{3}}^{2} \mathrm{Fe}_{5} \mathrm{O}_{12}$, and $\operatorname{Ln} \mathrm{Fe}_{2} \mathrm{O}_{4}$, while the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-(\mathrm{Yb}$ and $\mathrm{Lu})_{2} \mathrm{O}_{3}$ systems belong to the D type with four compounds $L n \mathrm{FeO}_{3}, L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, L n \mathrm{Fe}_{2} \mathrm{O}_{4}$, and $L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$. It is interesting that this classification depends wholly on the size of trivalent lanthanoid ions. Here, we show the four typical phase diagrams in Fig. 1.

The crystal structure analyses of $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ and $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}$, were performed by Kato et al. (8,9), and Kimizuka et al. (10) assert that there are homologous compounds $\left(L n \mathrm{FeO}_{3}\right)_{n} \mathrm{FeO}(n=1,2,3$, and 4) at high temperatures.

Katsura et al. (2) have studied some

Fig. 1. The four typical phase diagrams of $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-L n_{2} \mathrm{O}_{3}$ systems at $1200^{\circ} \mathrm{C}$. P, perovskite ($\left.L n \mathrm{FeO}\right)_{3}$); G, garnet ($L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$); M, magnetite ($\mathrm{Fe}_{3} \mathrm{O}_{4}$); W, wüstite (FeO); $\mathrm{A}, L n \mathrm{Fe}_{2} \mathrm{O}_{4}$; and $\mathrm{B}, L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$.

Fig. 2. The phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$. Numbers in the three solid fields mean the equilibrium oxygen partial pressure in terms of $-\log \mathrm{P}_{\mathrm{O}_{2}}(\mathrm{~atm})$. Solid circles show the experimental results. Composition of each symbol is given in Table IIIa.
thermochemical properties of lanthanoid-iron-perovskite, $L n \mathrm{FeO}_{3}(L n=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}$, $\mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$, and Y) and pointed out that the standard Gibbs free energy of formation of $L n \mathrm{FeO}_{3}$ at $1200^{\circ} \mathrm{C}$ from metallic iron, oxygen, and $L n_{2} \mathrm{O}_{3}$ is proportional to the tolerance factor defined by Goldschmidt et al. (11). Tretyakov et al. (21-23) reported independently the phase equilibria of $\mathrm{Ce}-\mathrm{Fe}-\mathrm{O}, \mathrm{Pr}-\mathrm{Fc}-$ O , and $\mathrm{Eu}-\mathrm{Fe}-\mathrm{O}$ systems at elevated temperatures.

The objectives of the present study are (i) to establish experimentally the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ systems at 1150,1200 , and $1250^{\circ} \mathrm{C}$, (ii) to determine the standard Gibbs free energies of formation of $L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ ($L n=\mathrm{Gd}, \mathrm{Tb}$, and Dy) from metallic iron, oxygen, and $L n_{2} \mathrm{O}_{3}$ in order to complete the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-(\mathrm{Gd}, \mathrm{Tb} \text {, and } \mathrm{Dy})_{2} \mathrm{O}_{3}$ systems, and (iii) to get the relationship between thermochemical and structural relative stabilities of $\quad L n \mathrm{FeO}_{3}, \quad L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}, \quad L n \mathrm{Fe}_{2} \mathrm{O}_{4}, \quad$ and $L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$.

Experimental

Guaranteed reagent grades of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, $\mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~Tb}_{2} \mathrm{O}_{3}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}$, and $\mathrm{Lu}_{2} \mathrm{O}_{3}$ powders were employed for all starting materials. Each lanthanoid sesquioxide has the purity of more than 99.9%. Starting samples with desired ratios of $L n_{2} \mathrm{O}_{3} / \mathrm{Fe}_{2} \mathrm{O}_{3}$ were obtained by mixing them in an agate mortar under ethyl alcohol. Mixtures thus obtained
were heated at $1200^{\circ} \mathrm{C}$ for $2-3$ days in air.
Apparatus and procedures to control oxygen partial pressures, the criterion for determining the equilibrium state, the methods of both identification of the phases and chemical analysis of quenched samples, and the calculation method of the standard Gibbs free energy are just the same as those described in our previous papers ($1-7$).

Results and Discussion

(1) Phase Equilibria

(a) The $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system. Figure 2 illustrates the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$. The following phases were stable under the present experimental conditions: $\mathrm{Ho}_{2} \mathrm{O}_{3}$, hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$, wüstite (FeO), metallic iron ($\gamma-\mathrm{Fe}$), holmium-ironperovskite $\left(\mathrm{HoFeO}_{3}\right)$, holmium-iron-garnet $\left(\mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}\right)$, and $\mathrm{HoFe}_{2} \mathrm{O}_{4}$.

The $\mathrm{Ho}_{2} \mathrm{O}_{3}$ phase was stable under oxygen partial pressures ranging from 1 to $10^{-16} \mathrm{~atm}$ at $1200^{\circ} \mathrm{C}$, and no significant nonstoichiometry was found in its composition. The HoFeO_{3} phase had a detectable deviation from its stoichiometric composition. As seen in Fig. 2, the composition of the HoFeO_{3} phase ranged from $\mathrm{HoFeO}_{3.000}$ to $\mathrm{HoFeO}_{2.95 s}$. However, the lattice constants of the HoFeO_{3} phase with the same structure as those of $\mathrm{EuFeO}_{3}, \mathrm{SmFeO}_{3}, \mathrm{ErFeO}_{3}$, and LuFeO_{3} were almost identical irrespective of their variable

TABLE I
Latilice Constants of $\mathrm{Ho}-\mathrm{Fe}-\mathrm{O}$ Compounds Synthesized at $1200^{\circ} \mathrm{C}$

Compound	$a(\AA)$	Lattice b (\AA)	nts $c(\AA)$	$V\left(\AA^{3}\right)$
$\mathrm{HoFeO}_{3.00}$	5.280 ± 0.001	$\begin{aligned} & 5.587 \pm 0.001 \\ & 5.591^{a} \end{aligned}$	$\begin{aligned} & 7.604 \pm 0.001 \\ & 7.602^{a} \end{aligned}$	224.3 ± 0.1
	$5.278{ }^{\prime \prime}$			224.3"
$\mathrm{HoFe} 2_{2} \mathrm{O}_{3.878}$	3.519 ± 0.001		24.85 ± 0.01	266.4 ± 0.1
$\mathrm{HoFe}_{2} \mathrm{O}_{3.927}$	3.520 ± 0.001		24.83 ± 0.01	266.5 ± 0.1
$\mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12.00}$	12.378 ± 0.001			1896.3 ± 0.1
	$12.375^{\text {b }}$			1895.1"

[^0]

Fig. 3. (a) The phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system at $1250^{\circ} \mathrm{C}$. (b) The phase equilibria in the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system at $1150^{\circ} \mathrm{C}$.
compositions. The $\mathrm{Ho}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$ phase had no significant deviation from the stoichiometric composition. The $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ phase was stable in the narrowest range of oxygen partial
pressures compared with any other phase of $L n \mathrm{Fe}_{2} \mathrm{O}_{4}(L n=\mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and Y$)$. The compositional variation ranged from $\mathrm{HoFe}_{2} \mathrm{O}_{3.927}\left(A_{1}\right.$ in Fig. 2) to $\mathrm{HoFe}_{2} \mathrm{O}_{3.869}\left(A_{4}\right.$

FIG. 4. The phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$. Composition of each symbol is given in Table IIIb.
in Fig. 2). The lattice constants of the $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ phase are given in Table I as the hexagonal crystal system, together with those of HoFeO_{3} and $\mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$. Figures 3a, b illustrate the phase equilibria in the same system at 1250 and $1150^{\circ} \mathrm{C}$, respectively. As seen in Fig. 3a, the phase equilibria at $1250^{\circ} \mathrm{C}$ are the same as those at $1200^{\circ} \mathrm{C}$ with respect to the phase assemblage, except for values of the equilibrium oxygen partial pressures. The composition of the $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ phase ranged from $\mathrm{HoFe}_{2} \mathrm{O}_{3.916}$ to $\mathrm{HoFe}_{2} \mathrm{O}_{3.867}$.

On the other hand, the phase equilibria in this system at $1150^{\circ} \mathrm{C}$ were essentially different from those at 1200 and $1250^{\circ} \mathrm{C}$. This is seen in Fig. 3b. The $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ phase disappeared at $1150^{\circ} \mathrm{C}$, and therefore, the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Ho}_{2} \mathrm{O}_{3}$ system at $1150^{\circ} \mathrm{C}$ should be transformed to the B type as seen in Fig. 1.
(b) The $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system. Figure 4 illustrates the phase equilibria in the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$. The following phases were stable under the present
experimental conditions: $\mathrm{Tm}_{2} \mathrm{O}_{3}$, hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$, wüstite (FeO), metallic iron ($\gamma-\mathrm{Fe}$), thulium-iron-perovskite (TmFeO_{3}), thulium-iron-garnet ($\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$), and $\mathrm{TmFe}_{2} \mathrm{O}_{4}$.
Thulium sesquioxide $\left(\mathrm{Tm}_{2} \mathrm{O}_{3}\right)$ was stable under oxygen partial pressures from 1 to 10^{-16} atm at $1200^{\circ} \mathrm{C}$, and there was no significant nonstoichiometry in its composition. Thulium-iron-perovskite $\left(\mathrm{TmFeO}_{3}\right)$ had a range of nonstoichiometry as shown in Fig. 4. The lattice constants were, however, identical irrespective of its nonstoichiometry. The thulium-iron-garnet $\left(\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}\right)$ also had a small but significant range of nonstoichiometry. The $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase was stable under the low oxygen partial pressures ranging from $10^{-8.93}$ to $10^{-11.93} \mathrm{~atm}$. The compositional variation of the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase was determined to be from $\mathrm{TmFe}_{2} \mathrm{O}_{4.022}$ to $\mathrm{TmFe}_{2} \mathrm{O}_{3.896}$. The lattice constants of the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase are given in Table II as the hexagonal crystal system, together with those of TmFeO_{3} and $\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ phases. As seen in Table II, it is

TABLE II
Latilice Constants of Tm-Fe-O Compounds Synthesized at $1200^{\circ} \mathrm{C}$

Compound	$a(\AA)$	$\begin{aligned} & \text { Lattice co } \\ & b(\AA) \end{aligned}$	$c(\dot{\text { ¢ }}$)	$V\left(\AA^{3}\right)$
$\mathrm{TmFeO}_{3.00}$	5.250 ± 0.001	$\begin{aligned} & 5.571 \pm 0.001 \\ & 5.576^{a} \end{aligned}$	7.579 ± 0.001	221.6 ± 0.1
	$5.251^{\prime \prime}$		$7.584^{\text {a }}$	$221.1^{\text {a }}$
$\mathrm{TmFe} \mathrm{O}_{3.911}$	3.480 ± 0.001		25.042 ± 0.004	262.6 ± 0.1
$\mathrm{TmFe} \mathrm{O}_{3.924}$	3.477 ± 0.001		25.037 ± 0.003	262.1 ± 0.1
$\mathrm{TmFe} \mathrm{O}_{3.970}$	3.474 ± 0.001		25.019 ± 0.002	261.5 ± 0.1
$\mathrm{TmFe} \mathrm{O}_{4.000}$	3.464 ± 0.001		25.057 ± 0.005	260.3 ± 0.1
$\mathrm{TmFe} \mathrm{O}_{4.010}$	3.462 ± 0.001		25.077 ± 0.005	260.3 ± 0.1
$\mathrm{Tm}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}{ }^{\text {c }}$	3.499 ± 0.001		28.410 ± 0.004	301.2 ± 0.1
$\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12.00}$	12.323 ± 0.001			1871.2 ± 0.1
	12.323 ${ }^{\text {b }}$			1871.3 ${ }^{\text {b }}$

" After Eibschutz (19).
${ }^{b}$ After Espinosa (15).
${ }^{\text {c }}$ Synthesized at $1380^{\circ} \mathrm{C}$.
interesting to note that the c value in the lattice constants of the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase has a minimum value against its composition, and this was also the case in the $\mathrm{LuFe}_{2} \mathrm{O}_{4}$ phase (6).

The phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-$ $\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$ are somewhat different from those of the other systems belonging to the C type in the sense of coexisting phase relations. First, thulium sesquioxide coexists with wüstite as shown in Fig. 4 and second, the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase coexists with magnetite under oxygen partial pressures ranging from $10^{-9.14}$ to $10^{-8.93} \mathrm{~atm}$. These relations with respect to the coexisting phases are similar to the phase equilibria belonging to the D type, and thus the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1200^{\circ} \mathrm{C}$ seems to be of transitional phase equilibria between C and D types.

As seen in Fig. 5a, the phase equilibria in this system at $1250^{\circ} \mathrm{C}$ were the same in the picture as that at $1200^{\circ} \mathrm{C}$. The composition of the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase ranged from $\mathrm{TmFe}_{2} \mathrm{O}_{3.879}$ to $\mathrm{TmFe}_{2} \mathrm{O}_{4.010}$ at $1250^{\circ} \mathrm{C}$. Figure 5 b illustrates the phase equilibria in this system at $1150^{\circ} \mathrm{C}$. The $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phase had compositions between $\mathrm{TmFe}_{2} \mathrm{O}_{3.904}$ and
$\mathrm{TmFe}_{2} \mathrm{O}_{4.003}$, and the $\mathrm{Tm}_{2} \mathrm{O}_{3}$ phase was not in equilibrium with wüstite at $1150^{\circ} \mathrm{C}$.

It should be pointed out here that the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-L n_{2} \mathrm{O}_{3}$ ($\mathrm{Ln}=\mathrm{Ho}$, Er , and Tm) systems at $1200^{\circ} \mathrm{C}$ are gradually transformed to those of the D type in the sequence of the size of lanthanoid ions, and that the phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-$ $\mathrm{Tm}_{2} \mathrm{O}_{3}$ system change their picture to those of the D type when we increase the temperature as shown in Figs. 4, 5a, and 5b. This may suggest that an unknown compound $\mathrm{Tm}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ may become stable at higher temperatures than $1250^{\circ} \mathrm{C}$. Under this consideration, we tried to obtain the $\mathrm{Tm}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ compound, and finally we have synthesized it at $1380^{\circ} \mathrm{C}$ and at an oxygen partial pressure of $10^{-7.48} \mathrm{~atm}$ (mixing ratio of $\mathrm{CO}_{2} / \mathrm{H}_{2}=5.41$). The lattice constants of the new compound $\mathrm{Tm}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ are given in Table II, and every X-ray diffraction peak could be indexed according to the same crystal system of $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ or $\mathrm{Lu}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}(9)$.
(c) Miscellaneous phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-L n_{3} \mathrm{O}_{3}$ systems. To complete the thermochemical studies of the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-$ $L_{2} \mathrm{O}_{3}(L n=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}$, $\mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and Y) systems, we determined the oxygen partial pressures at which

Fig. 5 (a) The phase equilibria in the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1250^{\circ} \mathrm{C}$. (b) The phase equilibria in the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1150^{\circ} \mathrm{C}$.
each garnet-type compound is in equilibrium with both perovskite and magnetite as written in the following equation:

$$
\frac{2}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+3 L n \mathrm{FeO}_{3}+\frac{1}{6} \mathrm{O}_{2}=L n_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}
$$

where $L n$ includes only Gd, Tb, and Dy . These three are the members of the B type, and thus these data are sufficient to construct the phase equilibria because Katsura et al. (2) have determined the equilibrium oxygen partial pressures of the decomposition reactions related to the perovskite-type compounds. At $1200^{\circ} \mathrm{C}$, the equilibrium oxygen partial pressures of the reaction for Gd, Tb, and Dy were determined to be $10^{-5.12}, 10^{-5.83}$, and $10^{-5.53}$ atm, respectively. In these three garnet-type compounds, only the $\mathrm{Gd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ phase had a significant nonstoichiometry ranging from $\mathrm{Gd}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12.00}$ to $\mathrm{Gd}_{3} \mathrm{Fe}_{3} \mathrm{O}_{11.97}$. In addition, we established the phase equilibria in the Fe $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Lu}_{2} \mathrm{O}_{3}$ system at 1150 and $1250^{\circ} \mathrm{C}$ to compare these with the same system at $1200^{\circ} \mathrm{C}$ (6). The phase equilibria in this system at 1150 and $1250^{\circ} \mathrm{C}$ were the same in diagram as that at $1200^{\circ} \mathrm{C}$.
(d) Summary of phase relations for the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-L n_{2} \mathrm{O}_{3}$ systems at high temperatures. It is correct that these systems at $1200^{\circ} \mathrm{C}$ are classified into four types based on the assembly of ternary compounds. However, as pointed out already in this paper, the classification depends greatly on temperature, and also, as found in the C and D types, each type of phase equilibria changes gradually its coexisting phase combinations. In connection with our studies, Tannieres (12) has studied the stability of $L n \mathrm{Fe}_{2} \mathrm{O}_{4}$ and $L n \mathrm{Fe}_{3} \mathrm{O}_{7}$ at 900 and $1000^{\circ} \mathrm{C}$. According to her study, it may be concluded that the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Tm}_{2} \mathrm{O}_{3}$ system at $1000^{\circ} \mathrm{C}$, the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}$ system at $900^{\circ} \mathrm{C}$, and the $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Lu}_{2} \mathrm{O}_{3}$ system at $900^{\circ} \mathrm{C}$ may belong to the C type, and the $\mathrm{Fe}-$ $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Lu}_{2} \mathrm{O}_{3}$ system at $1000^{\circ} \mathrm{C}$ may belong to the D type. Thus we can show conclusively the temperature dependence of each type at temperature intervals from 900 to $1400^{\circ} \mathrm{C}$ as illustrated in Fig. 6. From Fig. 6, it will be

Fig. 6. Relationship between the phase assemblage and temperature in $\mathrm{Fe}-\mathrm{Fe}_{2} \mathrm{O}_{3}-L n_{2} \mathrm{O}_{3}$ systems. The experimentally established phase diagrams are shown as open circles. Low-temperature area of Tm, Yb, and Lu was deduced from Tannieres (12).
recognized that the B and C types change to C and D types at elevated temperatures, respectively, that is, Ho belonging to the B type changes to the C type at $1180^{\circ} \mathrm{C}, \mathrm{Tm}$ which is a member of the C type at $1200^{\circ} \mathrm{C}$ changes to the D type at about $1350^{\circ} \mathrm{C}$, and Lu belonging to the C type below $1000^{\circ} \mathrm{C}$ changes to the D type at higher temperatures. From this fact, it is suggestive to obtain an unknown compound $L n_{3} \mathrm{Fe}_{4} \mathrm{O}_{10} \quad\left[\left(L n \mathrm{FeO}_{3}\right)_{3} \mathrm{FeO}\right]$ and $L n_{4} \mathrm{Fe}_{5} \mathrm{O}_{13}$ [$\left(\mathrm{LnFeO}_{3}\right)_{4} \mathrm{FeO}$]. Recently, Kimizuka et al. (10) have succeeded in synthesizing $\mathrm{Yb}_{3} \mathrm{Fe}_{4} \mathrm{O}_{10}$ and $\mathrm{Yb}_{4} \mathrm{Fe}_{5} \mathrm{O}_{13}$ at $1650^{\circ} \mathrm{C}$ and in CO_{2} atmosphere.
(2) Calculation of the Gibbs Free Energy of Formation of Ternary Compounds from $\mathrm{Ln}_{2} \mathrm{O}_{3}$, Metallic Iron, and Oxygen

The method of calculations has been described in the previous papers (1-7), and here we will merely present the results of calculations in cases for Ho and Tm. The key

Fig. 7. Relationship between $-\frac{1}{2} \log P_{\mathrm{O}_{2}}$ (atm) and $N_{0} / N_{\text {TmFe }_{2} \mathrm{O}_{4}}$ at $1200^{\circ} \mathrm{C}$.
points for calculations are as follows: Each compositional change of the $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ and $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ phases is small, and we could obtain the activity change being approximately linear with its composition. As an example, Fig. 7 shows the relationship between composition (in terms of $N_{0} / N_{\mathrm{TmFe}_{2} \mathrm{O}_{0}}$) and $-\frac{1}{2} \log P_{\mathrm{o}_{2}}$ which makes it possible to calculate the $\mathrm{TmFe}_{2} \mathrm{O}_{4}$ activity at $1200^{\circ} \mathrm{C}$. The calculated activity values are summarized in Tables IIIa and IIIb, and the standard Gibbs free energy values for $\mathrm{Ho}-\mathrm{Fe}-\mathrm{O}$ and $\mathrm{Tm}-\mathrm{Fe}-\mathrm{O}$ compounds at 1150,1200 , and $1250^{\circ} \mathrm{C}$ are given in Tables IVa and IVb , respectively.
(3) Relative Stability of Compounds with the Same Crystal Structure
Katsura et al. (2) have pointed out that the standard Gibbs free energy of formation of lanthanoid-iron-perovskite LnFeO_{3} from $L_{2} \mathrm{O}_{3}$, metallic iron, and oxygen changes proportionally with the tolerance factor defined by Goldschmidt et al. (11).

In this paper, we will apply the oxide-oxide reactions which do not involve the term of oxygen partial pressure.
(a) Perouskite-type compounds. We consider the standard Gibbs free energy change of
the following reaction (1), $\Delta G^{0}(1)$,

$$
\begin{equation*}
\frac{1}{2} \mathrm{Fe}_{2} \mathrm{O}_{3}+\frac{1}{2} \operatorname{Ln}_{2} \mathrm{O}_{3}=\operatorname{Ln} \mathrm{FeO}_{3} \tag{1}
\end{equation*}
$$

The standard Gibbs free energy of reaction (1) is easily calculated from the following reactions, (2) and (3):

$$
\begin{gather*}
\mathrm{Fe}+\frac{1}{2} \operatorname{Ln}_{2} \mathrm{O}_{3}+\frac{3}{4} \mathrm{O}_{2}=L n \mathrm{FeO}_{3} \tag{2}\\
2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2}=\mathrm{Fe}_{2} \mathrm{O}_{3} \tag{3}
\end{gather*}
$$

The standard Gibbs free energy of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ was cited from the JANAF Thermochemical Tables (13). ΔG^{0} (1) values thus obtained are listed in Table Va. Figure 8 shows the relationship between $\Delta G^{0}(1)$ and the tolerance factor of LnFeO_{3} defined by Goldschmidt et al. (11) [tolerance factor $t=$ $\left(r_{L n}+r_{0}\right) / 2^{1 / 2}\left(r_{\mathrm{Fe}}+r_{n}\right)$, where $r_{L n}, r_{0}$, and r_{Fe}
 respectivelyl. As seen in Fig. 8, the standard Gibbs free energy of reaction (1) is approximately proportional to the tolerance factor within the experimental errors, and the relationship is independent of temperature from 1150 to $1297^{\circ} \mathrm{C}$.
(b) Garnet-type compounds. The following chemical reaction (4) was investigated and the standard Gibbs free energy change, $\Delta G^{0}(4)$, was obtained through reactions (5) and (6),
$3 L n \mathrm{FeO}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}=L n_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$,
$3 \mathrm{LnFeO}_{3}+\frac{2}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+\frac{1}{6} \mathrm{O}_{2}=\operatorname{Ln}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$,
$\frac{2}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+\frac{1}{6} \mathrm{O}_{2} \quad=\mathrm{Fe}_{2} \mathrm{O}_{3}$.
The standard Gibbs free energy data of reaction (5), $\Delta G^{0}(5)$, have been determined by this and the previous studies ($1-7$), and that of reaction (6), $\Delta G^{0}(6)$, was cited from "JANAF" (13). The $\Delta G^{0}(4)$ values thus determined have somewhat larger experimental errors ($\pm 0.6 \mathrm{kcal}$) than those of $\mathrm{LnFeO}{ }_{3}$.

As seen in Table Vb , the most stable lanthanoid-iron-garnet exists around the middle of the lanthanoid elements, and either lighter or heavier elements become more unstable thermochemically on the basis of the standard Gibbs free energy of reaction (4). Thus, it may be understandable that La- and
TABLE III
Composition-Activity Relations

[^1]TABLE IVa
The Standard Gibes Free Energy Values for Ho-Fe-O Compounds

Reactions		$-\Delta G^{0}$ (kcal)		
		$1150{ }^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$1250^{\circ} \mathrm{C}$
(1)	$\mathrm{Fe}+\frac{1}{2} \mathrm{Ho}_{2} \mathrm{O}_{3}+\frac{3}{4} \mathrm{O}_{2}=\mathrm{HoFeO}_{3}$	61.6 ± 0.1	60.5 ± 0.2	59.2 ± 0.2
(2)	$\mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{FeO}$	40.7 ± 0.1	40.2 ± 0.1	39.7 ± 0.1
(3)	$2 \mathrm{Fe}+\frac{1}{2} \mathrm{Ho}_{2} \mathrm{O}_{3}+{ }_{4} \mathrm{O}_{2}=\mathrm{HoFe}_{2} \mathrm{O}_{4}$		100.9 ± 0.1	99.3 ± 0.1
(4)	$\frac{1}{2} \mathrm{HoFe}_{2} \mathrm{O}_{4}+\frac{1}{4} \mathrm{Ho}_{2} \mathrm{O}_{3}+\frac{1}{8} \mathrm{O}_{2}=\mathrm{HoFeO}_{3}$	-	10.0 ± 0.1	9.6 ± 0.1
(5)	$\mathrm{FeO}+\mathrm{HoFeO}_{3}=\mathrm{HoFe}_{2} \mathrm{O}_{4}$	-	0.15 ± 0.05	0.44 ± 0.05
(6)	$3 \mathrm{FcO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{Fe}_{3} \mathrm{O}_{4}$	34.6 ± 0.1	33.8 ± 0.1	32.75 ± 0.1
(7)	$3 \mathrm{HoFeO} 3+\frac{2}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+\frac{1}{6} \mathrm{O}_{2}=\mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	6.3 ± 0.1	6.1 ± 0.1	5.6 ± 0.1
(8)	$5 \mathrm{Fe}+\frac{1}{2} \mathrm{Ho}_{2} \mathrm{O}_{3}+\frac{15}{4} \mathrm{O}_{2}=\mathrm{Ho}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$	295.7 ± 0.7	290.5 ± 0.8	284.4 ± 0.8

TABLEIVb
Tife Standard Gibbs Free Energy Values for Tm-Fe-O Compounds

Reactions		$-\Delta G^{0}$ (kcal)		
		$1150^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$1250{ }^{\circ} \mathrm{C}$
(1)	$2 \mathrm{Fc}+\frac{1}{2} \mathrm{Tm}_{2} \mathrm{O}_{3}+\frac{5}{4} \mathrm{O}_{2}=\mathrm{TmFe}_{2} \mathrm{O}_{4}$	101.8 ± 0.1	100.6 ± 0.2	99.0 ± 0.2
(2)	$\mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{FeO}$	40.7 ± 0.1	40.2 ± 0.1	39.7 ± 0.1
(3)	$2 \mathrm{FeO}+\frac{1}{2} \mathrm{Tm}_{2} \mathrm{O}_{3}+\frac{1}{4} \mathrm{O}_{2}=\mathrm{TmFe}_{2} \mathrm{O}_{4}$	--	20.1 ± 0.1	19.7 ± 0.1
(4)	$\frac{1}{2} \mathrm{TmFe}_{2} \mathrm{O}_{4}+\frac{4}{4} \mathrm{Tm}_{2} \mathrm{O}_{3}+\frac{1}{8} \mathrm{O}_{2}=\mathrm{TmFeO}_{3}$	8.85 ± 0.05	8.44 ± 0.05	8.02 ± 0.05
(5)	$\mathrm{TmFe}_{2} \mathrm{O}_{4}+\frac{1}{6} \mathrm{O}_{2}=\frac{1}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{TmFeO}_{3}$	10.1 ± 0.1	9.6 ± 0.1	8.8 ± 0.1
(6)	$3 \mathrm{FeO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{Fe}_{3} \mathrm{O}_{4}$	34.6 ± 0.1	33.8 ± 0.1	32.75 ± 0.1
(7)	$3 \mathrm{TmFeO}{ }_{3}+\frac{2}{3} \mathrm{Fe}_{3} \mathrm{O}_{4}+\frac{1}{6} \mathrm{O}_{2}-\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	5.5 ± 0.1	5.3 ± 0.1	4.1 ± 0.1
(8)	$\mathrm{Fe}+\frac{1}{2} \mathrm{Tm}_{2} \mathrm{O}_{3}+\frac{3}{4} \mathrm{O}_{2}=\mathrm{TmFeO}_{3}$	59.7 ± 0.3	58.7 ± 0.3	57.4 ± 0.3
(9)	$5 \mathrm{Fe}+\frac{3}{2} \mathrm{Tm}_{2} \mathrm{O}_{3}+\frac{15}{4} \mathrm{O}_{2}=\mathrm{Tm}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	289.2 ± 0.8	284.5 ± 0.9	277.5 ± 0.9

Nd-iron-garnet are nonexisting compounds under the experimental conditions.

On the other hand, Euler and Bruce (16) have studied the structural analyses of garnettype compounds and determined the relationship between the geometrical distortions of tetra-, octa-, and dodecahedra of oxygen ions and the coordinates of oxygen ion in the crystal. According to their conclusions, the degree of distortion of polyhedra is the result of the compromise between the minimum distortion and the shortened shared edges of the polyhedra. Then, the crystal-chemical stability of the garnet structure was explained in terms of both cone angle σ and azimuth ϕ, and these should be 54.74° and 0 in the most ideal structure, respectively. The values of σ and ϕ for the present lanthanoid-iron-garnet
are cited in Table Vb . It may be seen from Table Vb that the values of σ for the lanthanoid-iron-garnet deviate from 54.74° with decreasing ionic radius from Sm to Lu , but, on the contrary, the values of ϕ approach zero with decreasing ionic radius. Thus, the contributions expected from both σ and ϕ are competitive. This may be in accord with the present thermochemical relative stability based on the standard Gibbs free energy of reaction (4).
(c) $\mathrm{LnFe}_{2} \mathrm{O}_{4}$ and $\mathrm{Ln}_{2} \mathrm{Fe}_{3} \mathrm{O}$, compounds. We will consider reaction (7),

$$
\begin{equation*}
\mathrm{FeO}+L n \mathrm{FeO}_{3}=L n \mathrm{Fe}_{2} \mathrm{O}_{4} . \tag{7}
\end{equation*}
$$

Here, the standard free energy of formation of FeO is cited from the data by "JANAF" (13).

The results are given in Table Vc. The
table Va

${ }^{2} n \mathrm{FeO}_{3}$	$1150^{\circ} \mathrm{C}$		$1200^{\circ} \mathrm{C}$		$1224^{\circ} \mathrm{C}$		$1250^{\circ} \mathrm{C}$		$1297{ }^{\circ} \mathrm{C}$	
	$-4 G^{0}(2)$	$-\Delta G^{0}(1)$	$-\Delta G^{0}(2)$	$-\Delta G^{0}(1)$	$-\Delta G^{0}(2)$	$-\Delta G^{0}(1)$	$-\Delta G^{0}(2)$	$-4 G^{0}(1)$	$-\Delta G^{0}(2)$	$-4 G^{0}(1)$
LaFeO_{3}			68.9 ± 0.1	15.7 ± 0.3			67.5 ± 0.1	15.7 ± 0.3	66.1 ± 0.1	15.6 ± 0.3
NdFeO_{3}			65.7 ± 0.1	12.5 ± 0.3			64.1 ± 0.1	12.4 ± 0.3	62.9 ± 0.1	12.4 ± 0.3
SmFeO_{3}			64.1 ± 0.1	10.9 ± 0.3			62.7 ± 0.1	10.9 ± 0.3	61.3 ± 0.1	10.8 ± 0.3
EuFeO_{3}			63.3 ± 0.1	10.1 ± 0.3	62.7 ± 0.1	10.2 ± 0.3	62.0 ± 0.1	10.2 ± 0.3	60.6 ± 0.1	10.1 ± 0.3
GdFeO_{3}			63.1 ± 0.1	9.9 ± 0.3	62.4 ± 0.1	9.9 ± 0.3	61.7 ± 0.1	9.9 ± 0.3	60.2 ± 0.1	9.7 ± 0.3
TbFeO_{3}	63.1 ± 0.1	8.4 ± 0.3	61.8 ± 0.1	8.6 ± 0.3	61.5 ± 0.1	9.0 ± 0.3	60.7 ± 0.1	8.9 ± 0.3		
DyFeO_{3}	62.4 ± 0.1	7.7 ± 0.3	61.2 ± 0.1	8.0 ± 0.3	60.8 ± 0.1	8.3 ± 0.3	59.9 ± 0.1	8.1 ± 0.3		
HoFeO_{3}	61.6 ± 0.1	6.9 ± 0.3	60.5 ± 0.2	7.2 ± 0.4			59.2 ± 0.2	7.4 ± 0.4		
ErFeO_{3}			59.8 ± 0.3	6.6 ± 0.4						
TmFcO_{3}	59.7 ± 0.3	5.1 ± 0.4	$\begin{aligned} & 58.7 \pm 0.3 \\ & 58.2 \pm 0.3 \end{aligned}$	$\begin{aligned} & 5.5 \pm 0.4 \\ & 49+0 . \end{aligned}$			57.4 ± 0.3	5.6 ± 0.4		
LuFeO_{3}	58.4 ± 0.3	3.7 ± 0.5	57.5 ± 0.3	4.3 ± 0.5			56.1 ± 0.3	4.3 ± 0.5		
YFeO_{3}			59.8 ± 0.2	6.0 ± 0.4						

$\ldots ._{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	$150^{\circ} \mathrm{C}$		$1200^{\circ} \mathrm{C}$		$1250^{\circ} \mathrm{C}$		$\sigma\left({ }^{\circ}\right.$	$\phi\left({ }^{\circ}\right)$
	$-\Delta G^{0}(5)$	$-\Delta G^{0}$ (4)	$-4 G^{0}(5)$	$-\Delta G^{0}(4)$	$-1 G^{0}(5)$	$-\Delta G^{0}(4)$		
$\mathrm{Smm}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$			298.5 ± 0.8	1.3 ± 0.6			51.0 ± 0.2^{a}	$2.2 \pm 0.2^{\text {d }}$
$\mathrm{Eu}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$			297.8 ± 0.8	2.0 ± 0.6				
$\mathrm{Gd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$			298.2 ± 0.8	2.9 ± 0.6			$50.6{ }^{6}$	$2.1{ }^{\text {b }}$
$\mathrm{Tb}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$			294.9 ± 0.8	3.7 ± 0.6				
$\mathrm{Dy}_{3} \mathrm{Fe} \mathrm{e}^{\left(\mathrm{O}_{12}\right.}$			292.7 ± 0.8	3.4 ± 0.6			$50.4{ }^{a}$	$1.8{ }^{\text {a }}$
$\mathrm{Ho}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	295.7 ± 0.7	3.0 ± 0.6	290.5 ± 0.8	3.3 ± 0.6	284.4 ± 0.8	2.8 ± 0.6		
$\mathrm{Er}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$			286.2 ± 0.8	2.3 ± 0.6				
$\mathrm{Tm}_{3} \mathrm{Fe}_{4} \mathrm{O}_{12}$	289.2 ± 0.8	2.1 ± 0.6	284.5 ± 0.9	2.5 ± 0.6	277.5 ± 0.9	1.8 ± 0.6		
$\mathrm{Yb}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$			283.4 ± 0.9	3.3 ± 0.6			50.1 ± 0.1^{4}	$1.9 \pm 0.2^{\text {a }}$
$\mathrm{Lu}_{3} \mathrm{Fe}_{3} \mathrm{O}_{12}$			279.0 ± 0.9	1.4 ± 0.6			49.5 ± 0.2^{a}	$1.4 \pm 0.3^{\text {a }}$
$\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$			288.9 ± 0.7	3.7 ± 0.6			$50.3 \pm 0 . \mathrm{I}^{\text {a }}$	$1.8 \pm 0.2^{\text {a }}$

[^2]
TABLE Vc

The Standard Gibbs Free Energy Values for Eqs. (7) and (8) Related to $L n \mathrm{Fe}_{2} \mathrm{O}_{4}$ and $L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ ($\mathrm{kcal} / \mathrm{mole}$)

$\underline{L n F e} \mathrm{O}_{4}$	$1150^{\circ} \mathrm{C}$		$1200^{\circ} \mathrm{C}$		$1250{ }^{\circ} \mathrm{C}$	
	$-\Delta G^{0}\left(7^{\prime}\right)^{a}$	$-\Delta G^{0}(7)$	$-\Delta G^{0}\left(7^{\prime}\right)^{a}$	$-\Delta G^{\prime \prime}{ }^{(7)}$	$-\Delta G^{0}\left(7^{\prime}\right)^{a}$	$-\Delta G^{0}{ }^{(7)}$
$\mathrm{HoFe}_{2} \mathrm{O}_{4}$	-	-	100.9 ± 0.1	0.15 ± 0.05	99.3 ± 0.1	0.44 ± 0.05
$\mathrm{ErFe}_{2} \mathrm{O}_{4}$	-	-	100.8 ± 0.1	0.86 ± 0.05		
$\mathrm{TmFe} \mathrm{O}_{4}$	101.8 ± 0.1	1.4 ± 0.2	100.6 ± 0.2	1.7 ± 0.1	99.0 ± 0.2	1.0 ± 0.1
$\mathrm{YbFe}_{2} \mathrm{O}_{4}$			100.4 ± 0.2	2.0 ± 0.2		
$\mathrm{LuFe}_{2} \mathrm{O}_{4}$	101.4 ± 0.2	2.3 ± 0.2	100.3 ± 0.2	2.6 ± 0.2	98.6 ± 0.2	2.8 ± 0.2
$\mathrm{YFe}_{2} \mathrm{O}_{4}$			100.6 ± 0.1	0.54 ± 0.05		
$L n_{2} \mathrm{Fe}_{3} \mathrm{O}{ }_{7}$	$-\Delta G^{0}\left(8^{\prime}\right)^{b}$	$-\Delta G^{0}(8)$	$-4 G^{0}\left(8^{\prime}\right)^{b}$	$-4 G^{0}(8)$	$-4 G^{0}\left(8^{\prime}\right)^{b}$	$-\Delta G^{0}(8)$
$\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$			158.4 ± 0.2	0.2 ± 0.2		
$\mathrm{Lu}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$	160.2 ± 0.2	0.3 ± 0.2	158.2 ± 0.2	0.3 ± 0.2	155.0 ± 0.2	0.3 ± 0.2

${ }^{a}$ Related to the equation, $2 \mathrm{Fe}+\frac{1}{2} L n_{2} \mathrm{O}_{3}+\frac{3}{4} \mathrm{O}_{2}=L n \mathrm{Fe}_{2} \mathrm{O}_{4}\left(7^{\prime}\right)$.
${ }^{b}$ Related to the equation, $3 \mathrm{Fe}+L n_{2} \mathrm{O}_{3}+2 \mathrm{O}_{2}=L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}\left(8^{\prime}\right)$.

Fig. 8. Relationship between $\Delta G^{v}(1)$ and the tolerance factor t. The line attached to each lanthanoid element shows the range of the experimental errors.
relationship between $\Delta G^{\circ}(7)$ and $1000 / T$ is illustrated in Fig. 9, where T means the absolute temperature. The slope of each compound which means the standard enthalpy of reaction (7) is positive. Figure 10 shows the relationship between $\Delta G^{0}(7)$ and T. It is seen that the standard entropy change of reaction (7) is also positive. Thus, reaction (7) will occur more preferably at higher temperatures. This may be the case for Ho where $\mathrm{HoFe}_{2} \mathrm{O}_{4}$ was synthesized above $1200^{\circ} \mathrm{C}$, but not at

Fig. 9. Relationship between $\Delta G^{0}(7) / T$ and $1000 / T$ in $\operatorname{Ln} \mathrm{Fe}_{2} \mathrm{O}_{4}$ compounds. The lines mean the same as those in Fig. 8.
$1150^{\circ} \mathrm{C}$. Figure 11 shows the relationship between $\Delta G^{\circ}(7)$ and the ionic radius of each lanthanoid ion from Shannon and Prewitt (14). As seen in Fig. 11, the $\Delta G^{0}(7)$ values at 1200 and at $1250^{\circ} \mathrm{C}$ are approximately proportio-

Fig. 10. Relationship between $\Delta G^{0}(7)$ and T in $L n \mathrm{Fe}_{2} \mathrm{O}_{4}$ compounds. The lines mean the same as those in Fig. 8.

Fig. 11. Relationship between $\Delta G^{0}(7)$ and the ionic radii of lanthanoids in $L n \mathrm{Fe}_{2} \mathrm{O}_{4}$ compounds at 1200 (solid line) and $1250^{\circ} \mathrm{C}$ (broken line). Results at $1150^{\circ} \mathrm{C}$ are also plotted by solid triangles.
nal to the ionic radius. It is persuasive that the compound $\mathrm{DyFe}_{2} \mathrm{O}_{4}$ will not be synthesized at $1200^{\circ} \mathrm{C}$ because of its positive standard Gibbs free energy of reaction (7).

For the series of $L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ compounds, reaction (8) will be chosen to describe the thermochemical relative stability,

$$
\begin{equation*}
L n \mathrm{Fe}_{2} \mathrm{O}_{4}+L n \mathrm{FeO}_{3}=L n_{2} \mathrm{Fe}_{3} \mathrm{O}_{7} \tag{8}
\end{equation*}
$$

where $L n$ includes Yb and Lu . The standard

Gibbs free energy change of reaction (8), $\Delta G^{0}(8)$, is easily calculated by using the data given in Tables IVa, b ; Va, b, and c . The obtained results are given in Table Vc.

Magnetic and Mössbauer studies, and the neutron diffraction analyses for $\left(L_{n} \mathrm{FeO}_{3}\right)_{n} \mathrm{FeO}(n=1,2,3$, and 4) have partly been performed by Sugihara et al. (17) and by Bertaut (18), respectively, but the detailed properties of these compounds are still open to question.

Acknowledgment

The present authors thank the Ministry of Education, Japan, for a Grant-in-Aid (No. 14705, 1976).

References

1. N. Kimizuka and T. Katsura, Bull. Chem. Soc. Japan 47, 1801 (1974).
2. T. Katsura, K. Kitayama, T. Suglhara, and N. Kimizuka, Bull. Chem. Soc. Japan 48, 1809 (1975).
3. K. Kitayama and T. Katsura, Bull. Chem. Soc. Japan 49, 998 (1976).
4. T. Sugihara, N. Kimizuka, and T. Katsura, Bull. Chem. Soc. Japan 48, 1806 (1976).
5. N. Kimizuka and T. Katsura, J. Solid State Chem. 15, 151 (1975).
6. T. Sekine and T. Katsura, J. Solid State Chem. 17, 49 (1976).
7. N. Kimizuka and T. Katsura, J. Solid State Chem. 13, 176 (1975).
8. K. Kato, I. Kawada, N. Kimizuka, and T. Katsura, Z. Kristallogr. 141, 314 (1975).
9. K. Kato, I. Kawada, N. Kimizuka, I. Shindo, and T. Katsura, Z. Kristallogr. 143, 278 (1976).
10. N. Kimizuka, K. Kato, I. Shindo, I. Kawada, and T. Katsura, Acta Crystallogr., B32, 1620 (1976).
11. V. M. Goldschmidt, T. Barth, G. Lunde, and W. Zachariasen, Pt. VII Skrifter Norske Videnskaps-Akad., Oslo, I. Mat. Naturv. KI, No. 2 (1926).
12. N. Tannieres, Thèse préséntee à l'université de Nancy I pour l'obtention du titre de docteur de spècialite (1974).
13. "JANAF Thermochemical Tables," 2nd ed., p. 37, NSRDS-NBS, 1971.
14. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25, 925 (1969). 26, 1046 (1970).
15. G. P. Espinosa, J. Chem. Phys. 37, 2344 (1962).
16. F. Euler and J. Bruce, Acta Crystallogr. 19, 971 (1965).
17. T. Sugihara, M. Abe, and T. Katsura, J. Phys. Soc. Japan 40, 1211 (1976).
18. E. F. Bertaut, private communication.
19. M. Eibschutz, Acta Crystallogr. 19, 337 (1965).
20. J. E. Weindemborner, Acta Crystallogr. 14, 1051 (1961).
21. Yu. D. Tretyakov, V. V. Sorokin, A. R. Kaul, and A. P. Erastova, J. Solid State Chem. 18, 253 (1976).
22. Yu. D. Tretyakov, V. V. Sorokin, and A. P. Erastova, J. Solid State Chem. 18, 263 (1976).
23. Yu. D. Tretyakov, V. V. Sorokin, and A. P. Erastova, J. Solid State Chem. 18, 271 (1976).
24. M. Marezio, J. P. Remeika, and P. D. Dernier, Inorg. Chem. 7, 1337 (1968).

[^0]: ${ }^{a}$ After Eibschutz (19).
 ${ }^{5}$ After Espinosa (15).

[^1]: ${ }^{b}$ Symbols in parentheses correspond to those in Fig. 5.

[^2]: ${ }^{a}$ After Euler and Bruce (16).
 Calculated from the data by Weindemborner (20).

